Nos tutelles




Notre espace

Notre espace


Accueil > Le réseau > Laboratoires partenaires


publié le , mis à jour le

Laboratoire Electrochimie Moléculaire – UMR CNRS 7591
Equipe REACTE « Réactivité et Catalyse par Transferts d’Electrons »

Laboratory of Molecular Electrochemistry – UMR CNRS 7591
Group REACTE « Reactivity and Catalysis by Electron Transfers »

Our studies, past and present, have allowed us to obtain an important sum of theoretical results in the field of the chemistry of electron transfers coupled to the breaking and/or the formation of chemical bonds, as well as in the field of small molecules activation.
Our original approach lies in the synergy between experimental methods based on electrochemistry (mainly cyclic voltammetry) and photochemistry (time-resolved laser techniques) and the use of semi-empirical models and ab initio calculations.
Our work is supported by institutions such as the University Pairs Diderot, the CNRS and the ANR (National Research Agency), by a technology transfer acceleration company (SATT IDF Innov) and by private companies such as Air Liquide.
Our current activities are more focused on the following topics :
• The coupling between electron transfer, proton transfer and bond breaking (fundamental aspects)
• Proton reduction by nanoparticles and transition metal based complexes
• Activation of CO2 both by electrochemical and photochemical routes
• Reduction of O2, of protons, and water oxidation by electrochemistry
• Activation of N2 by electrochemistry
• Molecular catalysis, catalysis in films and catalytic hybrid materials (mechanistic and fundamental aspects)
— -
Laboratoire Electrochimie Moléculaire
Université Paris Diderot
15 Rue Jean-Antoine de Baïf
Case courrier 7107
75205 Paris Cedex 13, FRANCE
Tel : (33) 1 57 27 87 87
Fax : (33) 1 57 27 87 88

Prix, distinctions

2016 / Prix du stage de M2 en électrochimie, Société Chimique de France, sub-division électrochimie
Etienne BOUTIN (resp. J. BONIN) « Préparation et caractérisation de photocathodes semi-conductrices à base d’oxyde de cuivre pour la réduction photoélectrochimique du dioxyde de carbone avec des porphyrines de fer »
2017 / Prix International - Challenge Air Liquide des molécules essentielles, Marc Robert, Cyrille Costentin et Jean-Michel Savéant (déjà en ligne dans les faits marquants, « en direct des labos »)
2017 / Marc Robert, nommé membre sénior de l’Institut Universitaire de France (IUF)

Publications marquantes
"A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst"
C. Costentin, S. Drouet, M. Robert, J-M. Savéant, Science 2012, 338, 90-94.

"Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis"
C. Costentin, S. Drouet, M. Robert, J-M. Savéant, J. Am. Chem. Soc. 2012, 134, 11235-11242.

"Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials"
A. Tatin, C. Cominges, B. Kokoh, C. Costentin, M. Robert, J-M. Savéant, Proc. Natl. Acad. Sci. USA 2016, 113, 5526-5529.

“Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion.”
I. Azcarate, C. Costentin, M. Robert, J-M. Savéant, J. Am. Chem. Soc. 2016, 138, 16639-16644.

“Electrochemical formation and reactivity of a manganese peroxo complex : acid driven H2O2 generation vs. O-O bond cleavage”
HY V. Ching, E. Anxolabéhère-Mallart, H. Colmer, C. Costentin, P. Dorlet, T. Jackson, C. Policar, M. Robert, Chem. Sci. 2014, 5, 2304-2310.

“Conduction and reactivity in heterogeneous-molecular catalysis. New insights in water oxidation catalysis by phosphate cobalt oxide films”
C. Costentin, T. R. Porter, J.-M. Savéant J. Am. Chem. Soc. 2016, 138, 5615-5622.

“Molecular catalysis of H2 evolution. Diagnosing heterolytic vs. homolytic pathways”
Costentin, H. Dridi, J-M. Savéant, J. Am. Chem. Soc. 2014, 136, 13727-13734.

“Homogeneous photocatalytic reduction of CO2 to CO using iron(0) porphyrin catalysts : mechanism and intrinsic limitations”
J. Bonin, M. Chaussemier, M. Robert and M. Routier
ChemCatChem 2014, 6, 3200-3207.

“Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst“
J. Bonin, M. Robert, M. Routier, J. Am. Chem. Soc. 2014, 136, 16768-16771.

“Molecular catalysis of the electrochemical and photochemical reduction of CO2 with earth abundant metal complexes. Selective production of CO vs. HCOOH by switching of the metal center”
L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K.-C. Lau, T.-C. Lau and M. Robert
J. Am. Chem. Soc. 2015, 137, 10918-10924.

“Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation”
H. Rao, W.-Q. Yu, H.-Q. Zheng, J. Bonin, Y.-T. Fan, H.-W. Hou
J. Power Sources 2016, 324, 253-260.

"Running the clock : CO2 catalysis in the age of anthropocene"
M. Robert
ACS Energy Lett. 2016, 1, 281-282.

"Attempts to catalyze the electrochemical CO2-to-methanol conversion by biomimetic 2e-+2H+ transferring molecules"
J.-M. Savéant and C. Tard
J. Am. Chem. Soc. 2016, 138, 1017-1021.

“A case for electrofuels”
A. Tatin, J. Bonin and M. Robert
ACS Energy Letters 2016, 1, 1062-1064.

“Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co based complexes. Recent advances”
J. Bonin, A. Maurin and M. Robert
Coord. Chem. Rev. 2017, 334, 184-198.

“Non-sensitized selective photochemical reduction of CO2 to CO under visible light with an iron molecular catalyst”
H. Rao, J. Bonin and M. Robert
Chem. Commun. 2017, 53, 2830-2833.

"Local Proton Source in Electrocatalytic CO2 Reduction with [Mn(bpy-R)(CO)3Br] Complexes"
F. Franco, C. Cometto, L. Nencini, C. Barolo, F. Sordello, C. Minero, J. Fiedler, M. Robert, R. Gobetto and C. Nervi
Chem.-Eur. J. 2017, 23, 4782-4793.

"Electrons, photons, protons and earth abundant metal complexes for molecular catalysis of CO2 reduction"
H. Takeda, C. Cometto, O. Ishitani and M. Robert
ACS Catal. 2017, 7, 70-88.

“Visible-light driven methane formation from CO2 with a molecular iron catalyst”
H. Rao, L. C. Schmidt, J. Bonin and M. Robert
Nature, 2017, doi : 10.1038/nature23016.

Instrumentation, plateforme

de nombreux potentiostats (Autolab PGSTAT128N, Princeton Applied Research PARSTAT2273, PARSTAT4000)
2 chromatographies gazeuses (Agilent 7820A)
1 chromatographie ionique (Thermo Dionex ICS-1100)
1 simulateur solaire (Newport LCS-100)
1 stopped-flow (BioLogic MOS-200/SFM-300)
1 spectrofluorimètre (Agilent Cary Eclipse)
1 plateforme de spectroscopie laser résolue en temps (Edinburgh Instruments LP920-KS)